Novel synthesis of hexaaryl[3]radialenes via dibromo[3]dendralenes ${ }^{\dagger}$

Masahiko Iyoda, ${ }^{\text {a,* }}$ Nobuko Nakamura, ${ }^{\text {a }}$ Mie Todaka, ${ }^{\text {a }}$ Shinya Ohtsu, ${ }^{\text {a }}$ Kenji Hara, ${ }^{\text {a }}$ Yoshiyuki Kuwatani, ${ }^{\text {a }}$ Masato Yoshida, ${ }^{\text {a }}$ Haruo Matsuyama, ${ }^{\text {a }}$ Masaki Sugita, ${ }^{\text {b }}$ Hiroshi Tachibana ${ }^{\text {b }}$ and Haruo Inoue ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
${ }^{\mathrm{b}}$ Department of Applied Chemistry, Graduate School of Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

Received 5 June 2000; revised 10 July 2000; accepted 14 July 2000

Abstract

We report here an efficient route to the synthesis of highly fluorescent hexaaryl[3]radialenes using the oligomerization of ate-type copper carbenoids, followed by cyclization with hexamethylditin and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$; the structures of the [3]dendralene and hexaaryl[3]radialenes were determined by X-ray crystallographic analysis. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: carbene and carbenoids; coupling reactions; cyclizations; cycloalkenes; fluorescence; oligomerization.

Radialenes (polymethylenecycloalkanes) have received considerable attention from both theorists and experimentalists, ${ }^{1}$ because they display a particular arrangement of π-electrons ${ }^{2}$ and because they can serve as electron donors and acceptors. ${ }^{3}$ In conjunction with our program to develop methods for transition-metal-catalyzed synthesis of new π-electron systems, we have investigated a one-pot synthesis of radialenes by either cyclooligomerization of cumulenic double bonds ${ }^{4}$ or carbenoids. ${ }^{5,6}$ Through these investigations, we found that the ate-type copper carbenoids $\mathbf{1}$ oligomerize to produce dendralenes $\mathbf{2}$. We now report here the synthesis of [3]radialenes ($\mathbf{3}$ and $\mathbf{4}$) starting from [3]dendralenes $\mathbf{2}$ (Scheme 1).

Although the reaction of the ate-type copper carbenoid 1a, derived from $\mathbf{5}$ by successive treatment with $\mathrm{Bu}^{n} \mathrm{Li}$ (1.1 equiv.) and $\mathrm{CuI} \cdot \mathrm{PBu}_{3}^{n}$ (0.5 equiv.) at low temperatures, produced octaphenyl[4]radialene $7 \mathbf{7 a}$ with increasing temperature; ${ }^{6 a}$ tetraphenylbutatriene $\mathbf{8}$ and the [3]dendralene derivative 9 were obtained by quenching the reaction mixture with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ at $-78^{\circ} \mathrm{C}$

[^0]

Scheme 1.
(Scheme 2). Since the precursor of 9 was expected as an organocopper species, we quenched the reaction mixture with Br_{2} (1.1 equiv.) to form the dibromo[3]dendralene $\mathbf{1 0}$ in 27% yield, together with $\mathbf{8}(19 \%) .{ }^{7}$ In a similar manner, successive treatment of $\mathbf{6}$ with $\mathrm{Bu}^{n} \mathrm{Li}$ (1.1 equiv.) and $\mathrm{CuI} \cdot \mathrm{PBu}_{3}^{n}$ (0.5 equiv.) at low temperatures, followed by quenching with Br_{2} (1.4 equiv.), produced the [3]dendralene 11 in 35% yield.

Scheme 2.
Although it is difficult to determine the structures of $\mathbf{1 0}$ and $\mathbf{1 1}$ exactly by using complicated ${ }^{1} \mathrm{H}$ NMR spectra due to hindered rotation of aromatic rings, the structure of $\mathbf{1 0}$ was determined unambiguously by an X-ray diffraction method (Fig. 1). ${ }^{8}$ The [3]dendralene $\mathbf{1 0}$ has a stacking structure with approximate C_{2} symmetry. In agreement with the temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectra, $\mathbf{1 0}$ has crowded phenyl groups, and the two sets of benzene rings are stacked face-to-face with a distance of $3.41 \AA$, whereas the terminal two are apart from each other. Interestingly, two bromine atoms are oriented in the same direction, and the intramolecular $\mathrm{Br} \cdots \mathrm{Br}$ distance is $3.95 \AA$. Therefore, the conformation of $\mathbf{1 0}$ is favorable for intramolecular coupling using metal catalysts.

After some unsuccessful attempts for the cyclization of $\mathbf{1 0}$, we found that the reaction of $\mathbf{1 0}$ with hexamethylditin (2 equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.3 \text { equiv. })^{9}$ in dioxane at $160^{\circ} \mathrm{C}$ for 24 h resulted in the formation of hexaphenyl[3]radialene 3 (28%; 34% based on the consumed 10), together with the recovered $\mathbf{1 0}$ (14%; Scheme 2). In a similar manner, the reaction of $\mathbf{1 1}$ with hexamethylditin (2 equiv.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.3 equiv.) in dioxane at $160^{\circ} \mathrm{C}$ for 24 h led to hexa $(4-$ chlorophenyl)[3]radialene 4 in 35% yield. As has been reported previously, ${ }^{2 c}$ aryl-substituted [3]radialenes show redox properties. The reduction potentials of 3 and 4 measured by cyclic voltammetry (V versus $\mathrm{Fc} / \mathrm{Fc}^{+}$, $0.1 \mathrm{M} \mathrm{Bu}_{4}^{n} \mathrm{NClO}_{4}$, o-dichlorobenzene, rt) revealed two reversible

Figure 1. ORTEP diagram of $\mathbf{1 0}$
one-electron redox steps (3: -1.08 and $-1.53 \mathrm{~V} ; \mathbf{4}:-0.82$ and -1.31 V). Although 3 and $\mathbf{4}$ show similar electronic spectra, crystals of $\mathbf{3}$ and $\mathbf{4}$ have orange-yellow and red color, respectively.

The crystal structures of $\mathbf{3}$ and $\mathbf{4}$ were determined by X-ray analysis (Fig. 2). ${ }^{10}$ As shown in Fig. 2a, $\mathbf{3}$ has an approximate C_{3} symmetry, and the six phenyl groups are arranged to form a screw-shaped geometry. The radialene ring shows a high coplanarity, and the maximum atomic deviations from the least-squares planes of the three-membered ring and radialene framework are 0.006 and $0.02 \AA$, respectively. The three exocyclic double bonds reveal a slight torsion ($8-13^{\circ}$), and the three sets of approximately parallel phenyl groups are located at angles of $33-47^{\circ}$ to the
(a)

(b)

Figure 2. (a) ORTEP diagram of 3 . Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$: C1-C2 1.450(10), C2-C3 1.430 (10), C3C1 1.430(10), C1-C4 1.35(1), C2-C5 1.359(10), C3-C6 1.37(1), C2-C1-C3 59.6(4), C1-C2-C3 59.5(4), C1-C3-C2 60.9(4), C1-C2-C5 152.0(6), and C2-C5-C19 122.2(6). (b) ORTEP diagram of 4. Selected bond lengths (\AA) and angles $\left(^{\circ}\right.$): C1-C2 1.429(5), C2-C3 1.423 (6), C3-C1 1.436 (5), C1-C4 1.349(5), C2-C1-C3 59.6(3), C1-C2-C5 147.7(4), and C2-C5-C19 118.4(4)
plane of the radialene ring. Although the substitution of chlorine sometimes causes a structural deformation, the crystal structure of $\mathbf{4}$ is very similar to that of $\mathbf{3}$ (Fig. 2b).

As shown in Fig. 3, hexaaryl[3]radialenes 3 and 4 are fluorescent. The fluorescence quantum yield $\left(\Phi_{\mathrm{F}}=0.18\right)$ of $\mathbf{4}$ is three times larger than that of $\mathbf{3}\left(\Phi_{\mathrm{F}}=0.064\right)$. The introduction of a heavy atom such as chlorine is often observed to enhance intersystem crossing and decrease fluorescence intensity drastically, ${ }^{11}$ while this is not the case for $\mathbf{3}$ and $\mathbf{4}$. Both $\mathbf{3}$ and $\mathbf{4}$ exhibit rather large shifts between the absorption and fluorescence maxima (Δv), in accord with their having intramolecular charge transfer character in the lowest excited singlet states as predicted by CNDO/S3 and AM1 MO calculations. The zero-zero band energies $\left(E_{0-0}\right)$ are similar, while the fluorescence lifetime ($\tau=6.6 \mathrm{~ns}$) of $\mathbf{4}$ is three times longer than that (2.6 ns) of $\mathbf{3}$ (Fig. 3 and Table 1).

The lower fluorescence quantum yield of $\mathbf{3}$ than $\mathbf{4}$ is mainly due to the larger non-radiative rate constant $\left(k_{\mathrm{nr}}\right)$, while the radiative rate constants $\left(k_{\mathrm{r}}\right)$ are very similar (Table 1). The lack of a heavy atom effect suggests that the intersystem crossing makes a small contribution to the nonradiative process in radialenes. Detailed study on this point is now in progress.

Figure 3. Electronic and fluorescence spectra of $\mathbf{3}$ and $\mathbf{4}$ in benzene

Table 1
Absorption spectra and fluorescence data of 3 and $\mathbf{4}^{\text {a) }}$

	Absorption		Fluorescence ${ }^{\text {c }}$)			Δv	E_{0-0}	k_{r}	k_{nr}
	$\lambda_{\text {max }}(\mathrm{nm})$	$\left(10^{3}\right)^{\text {b }}$	$\lambda_{\text {max }}(\mathrm{nm})$	$\Phi_{\mathrm{F}}\left(10^{-2}\right)$	(ns)	$0^{3} \mathrm{~cm}^{-1}$)	$\left(10^{4} \mathrm{~cm}^{-1}\right)$	$\left(10^{7} \mathrm{~s}^{-1}\right)$	$\left.10^{8} \mathrm{~s}^{-1}\right)$
3	468	37	617	6.4	2.6	5.2	1.90	2.5	3.6
4	483	48	606	18	6.6	4.2	1.87	2.7	1.2

a) In benzene. b) $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$. c) Fluorescence quantum yields (Φ_{F}) were determined by comparison with 4-aminofluorenone in benzene $\left(\Phi_{\mathrm{F}}=0.074\right) .{ }^{12}$

Acknowledgements

Financial support for this study was provided by a Grant-in-Aid (06224223) for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture, Japan.

References

1. (a) Dewar, M. J. S.; Gleicher, G. J. J. Am. Chem. Soc. 1965, 87, 692-696; Hess Jr., B. A.; Schaad, L. J. Ibid. 1971, 93, 305-310; Aihara, J. Ibid. 1976, 98, 2750-2785. (b) Blomquist, A. T.; Longone, D. T. J. Am. Chem. Soc. 1959, 81, 2012-2017; Dorko, E. A. Ibid. 1965, 87, 5518-5520; Waitkus, P. A.; Sanders, E. B.; Peterson, L. I.; Griffin, G. W. Ibid. 1967, 89, 6318-6327; Bally, T.; Haselbach, E.; Lanyiova, Z.; Baertschi, P. Helv. Chim. Acta 1978, 61, 2488-2502.
2. (a) Weltin, E.; Gerson, F.; Murrell, J. N.; Heilbronner, E. Helv. Chim. Acta 1961, 44, 1400-1413; Heilbronner, E. Theor. Chim. Acta 1966, 4, 64-68. (b) Iauge, T.; Gramlich, V.; Amrein, W.; Diederich, F.; Gross, M.; Bouden, C.; Gisselbrech, J.-P. Angew. Chem., Int. Ed. Engl. 1995, 34, 805-809. (c) Enomoto, T.; Kawase, T.; Kurata, H.; Oda, M. Tetrahedron Lett. 1997, 38, 2693-2696.
3. (a) Fukunaga, T. J. Am. Chem. Soc. 1976, 98, 610-611; Fukunaga, T.; Gordon, M. D.; Krusic, P. J. Ibid. 1976, 98, 611-613. (b) Benham, J. L.; West, R.; Norman, J. A. T. J. Am. Chem. Soc. 1980, 102, 5047-5053; Benham, J. L.; West, R. Ibid. 1980, 102, 5054-5058. (c) Breslow, R. Pure Appl. Chem. 1982, 54, 927-938; Mol. Cryst. Liq. Cryst. 1985, 125, 261-267; LePage, T. L.; Breslow, R. J. Am. Chem. Soc. 1987, 109, 6412-6421. (d) Miller, J. S.; Epstein, A. J. J. Am. Chem. Soc. 1987, 109, 3850-3855; Miller, J. S.; Epstein, A. J.; Reiff, W. M. Acc. Chem. Res. 1988, 21, 114 120; Science 1988, 240, 40-47. (e) Gompper, R.; Wagner, H.-U. Angew. Chem., Int. Ed. Engl. 1988, 27, 1437-1455. (f) Yoshida, Z.; Sugimoto, T. Angew. Chem., Int. Ed. Engl. 1988, 27, 1573-1577.
4. (a) Iyoda, M.; Tanaka, S.; Nose, M.; Oda, M. J. Chem. Soc., Chem. Commun. 1983, 1058-1059; Iyoda, M.; Tanaka, S.; Otani, H.; Nose, M.; Oda, M. J. Am. Chem. Soc. 1988, 110, 8494-8500. (b) Iyoda, M.; Kuwatani, Y.; Oda, M. J. Am. Chem. Soc. 1989, 111, 3761-3762; Iyoda, M.; Kuwatani, Y.; Oda, M.; Kai, Y.; Kanehisa, N.; Kasai, N. Angew. Chem., Int. Ed. Engl. 1990, 29, 1062-1064; Iyoda, M.; Oda, M.; Kai, Y.; Kanehisa, N.; Kasai, N. Chem. Lett. 1990, 2149-2152.
5. (a) Iyoda, M.; Otani, H.; Oda, M.; Kai, Y.; Baba, Y.; Kasai, N. J. Am. Chem. Soc. 1986, 108, 5371-5372. (b) Iyoda, M.; Otani, H.; Oda, M.; Kai, Y.; Baba, Y.; Kasai, N. J. Chem. Soc., Chem. Commun. 1986, 1794-1796. (c) Iyoda, M.; Otani, H.; Oda, M. Angew. Chem., Int. Ed. Engl. 1988, 27, 1080-1081.
6. (a) Iyoda, M.; Otani, H.; Oda, M.; Kai, Y.; Baba, Y.; Kasai, N. J. Am. Chem. Soc. 1986, 108, 5371-5372. (b) Iyoda, M.; Otani, H.; Oda, M.; Kai, Y.; Baba, Y.; Kasai, N. J. Chem. Soc., Chem. Commun. 1986, 1794-1796. (c) Iyoda, M.; Otani, H.; Oda, M. Angew. Chem., Int. Ed. Engl. 1988, 27, 1080-1081.
7. All compounds gave satisfactory analytical and spectral data. For example, compound 10: pale orange prisms, mp $174.5-175.8^{\circ} \mathrm{C}$ (decomp.); MS $m / z 696,694,692\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.01-7.31(\mathrm{~m}, 30 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 109.86,126.49,127.60,127.86,127.94,128.21,128.26,128.31,128.34,128.37,128.57,128.61,128.77$, $128.81,128.85,128.87,129.55,129.58,129.72,130.10,130.11,131.54,134.83,136.99,141.24,141.32,141.48$, $142.99,143.33,143.36,145.29,145.59,146.75,147.19,148.81,149.02,150.02,152.55 ; \mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)$ 308 (4.30), 360sh (3.94) nm; HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{30}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}$: 694.0693. Found: 694.0677. Compound 11: pale yellow crystals, mp $260.4-264.2^{\circ} \mathrm{C}$ (decomp.); FAB-MS $m / z 901,899,897\left(\mathrm{M}^{+}+1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.92-7.05$ $(\mathrm{m}, 18 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 125.22,126.30,127.92,127.97,128.52,128.57,128.61,129.96$, $130.15,130.21,130.33,130.35,130.37,133.57,133.65,133.95,134.00,134.05,134.39,134.51,134.64,136.62$, $138.09,138.20,138.40,139.61,139.92,139.96,141.54,141.83,144.19,144.58,144.89,145.23,149.93$. Compound 3: yellow prisms, mp $334.7-336.8^{\circ} \mathrm{C}$ (decomp.); MS $m / z 534\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.76(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 12 \mathrm{H}), 6.81$ $(\mathrm{dd}, \mathrm{J}=8.2$ and $1.2,12 \mathrm{H}), 7.09(\mathrm{tt}, \mathrm{J}=7.4$ and $1.2,6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 118.24,123.82,126.58,126.87$, 130.26, 141.25; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\text {max }}(\log \varepsilon) 277(4.43), 467(4.47) \mathrm{nm}$; UV (benzene): $\lambda_{\max }(\log \varepsilon) 468$ (4.57) nm. Compound 4: reddish orange needles, mp 353.5-355.2 ${ }^{\circ} \mathrm{C}$ (decomp.); MS $m / z 738\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.72$ $(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 12 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.5,12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 117.99,122.08$, 127.14, 131.29, 134.31, 138.75; UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\log \varepsilon) 285$ (4.76), 339sh (4.08), 482 (4.77) nm; UV (benzene): $\lambda_{\max }(\log \varepsilon) 483$ (4.68) nm; HRMS calcd for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{Cl}_{6}$: 738.0009. Found: 737.9964.
8. Crystal data for 10: $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{Br}_{2}, M w=694.51$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=12.25(1), b=15.755(8)$, $c=18.000(8) \AA, \beta=99.86(5)^{\circ}, V=3423(3) \AA^{3}, Z=4, D \mathrm{c}=1.347 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.069, R \mathrm{w}=0.071$, GOF = 4.23 for 3372 reflections with $I>3.00 \sigma(I)$.
9. Kelly, T. R.; Li, Q.; Bhushan, V. Tetrahedron Lett. 1990, 31, 161-164; Grigg, R.; Teasdale, A.; Sridharan, V. Ibid., 1991, 32, 3859-3862; Iyoda, M.; Miura, M.; Sasaki, S.; Kabir, S. M. H.; Kuwatani, Y.; Yoshida, M. Ibid. 1997, 38, 4581-4582.
10. Crystal data for 3: $\mathrm{C}_{42} \mathrm{H}_{30}, M w=534.70$, triclinic, space group $P-1$ (No. 2), $a=12.374(7), b=13.685(6)$, $c=10.635(3) \AA, \alpha=100.46(3)^{\circ}, \beta=106.57(3)^{\circ}, \gamma=115.49(4)^{\circ}, V=1458(1) \AA^{3}, Z=2, D \mathrm{c}=1.217 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.056$, $R \mathrm{~W}=0.069, \mathrm{GOF}=1.18$ for 1384 reflections with $I>3.00 \sigma(I)$. Crystal data for 4: $\mathrm{C}_{42} \mathrm{H}_{24} \mathrm{Cl}_{6}, M w=741.37$, monoclinic, space group $P 2_{1}($ No. 4$), a=14.307(2), b=9.517(2), c=14.715(2) \AA, \beta=117.25(1)^{\circ}, V=1781.2(6) \AA^{3}$, $Z=2, D \mathrm{c}=1.382 \mathrm{~g} \mathrm{~cm}^{-3}, R=0.037, R \mathrm{w}=0.049, \mathrm{GOF}=1.20$ for 2595 reflections with $I>3.00 \sigma(I)$.
11. McClure, D. S. J. Chem. Phys. 1949, 17, 905-913; Turro, N. J. Modern Molecular Photochemistry; The Benjamin/ Cummings Publishing Company: New York, 1978; p. 192; Davidson, R. S.; Bonneau, R.; Joussot-Dubien, J.; Trethewey, K. R. Chem. Phys. Lett. 1980, 74, 318-320.
12. Yatsuhashi, T.; Nakajima, Y.; Shimada, T.; Inoue, H. J. Phys. Chem. A 1998, 102, 3018-3024.

[^0]: * Corresponding author. Tel: +81-426-77-2547; fax: +81-426-77-2525; e-mail: iyoda-masahiko@c.metro-u.ac.jp
 \dagger Dedicated to Professor Richard Neidlin on the occasion of his 70th birthday.

